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Motivation

Classical logic is the main tool for formalizing reasoning, but

• its expressive power is not enough to formalize many facets of
commonsense reasoning;

• there is a need to cope with different forms of imperfect information:
partial, uncertain, imprecise, vague, etc.
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Mathematical Fuzzy Logic

[Hájek, 1998]

• formal systems (syntax, semantics, complete axiomatizations, proof
theory, etc...)

• [0, 1]: usual choice of truth-value set

• truth-functionality assumption

• logics of comparative truth: truth(φ→ ψ) = 1 iff
truth(φ) ≤ truth(ψ)

• generalizations of classical logic
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Mathematical Fuzzy Logic

Hàjek’s idea: to base the semantics on the truth function for conjunction:

A t-norm is a binary operation ∗ on [0, 1] such that:

(i) ∗ is commutative and associative,

(ii) ∗ is non-decreasing in both arguments,

(iii) 1 ∗ x = x and 0 ∗ x = 0 for all x ∈ [0, 1].

The choice of the t-norm determines the whole calculus, indeed the truth
function of implication is the residuum of the t-norm:

x→ y = sup{z : x ∗ z ≤ y}

(if the t-norm is continuous, such sup exists and it is unique)
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Three main logics:

•  Lukasiewicz logic  L [’20s - ’30s]

- x ∗ L y = max(0, x+ y − 1)

- x→ L y = min(1, 1− x+ y)

- ¬ Lx = x→ L 0 = 1− x

• Gödel logic G [1930 Heyting, 1933 Gödel, 1959 Dummett]

- x ∗G y = min(x, y)

- x→G y = 1 if x ≤ y, or x→G y = y otherwise

- ¬Gx = 1 if x = 0, or ¬Gx = 0 otherwise

• Product logic Π [Esteva, Godo, Hájek 1996]

- x ∗G y = x · y
- x→Π y = 1 if x ≤ y, or x→Π y = y/x otherwise

- ¬Πx = 1 if x = 0, or ¬Πx = 0 otherwise
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Why  L, G and Π?

• Hájek’s framework is well-established and deeply studied.
Between fuzzy logics given by continuous t-norms,  L, G and Π are
fundamental: any other such logic is a combination of them.

• They enjoy interesting and useful properties. For example, the
algebra on [0, 1] is standard:

the algebra of formulas with n variables corresponds exactly to the
algebra of [0, 1]- valued functions with domain [0, 1]n and operations
defined componentwise by standard ones.

φ! fφ

with φ formula of n variables, fφ : [0, 1]n → [0, 1].
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Uncertainty vs vagueness

We said we wanted to deal with imperfect information.

This can lead to:

• VAGUENESS =⇒ MANY-VALUED LOGIC

• UNCERTAINTY =⇒ PROBABILITY
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Uncertainty vs vagueness

We said we wanted to deal with imperfect information. This can lead to:

• VAGUENESS =⇒ MANY-VALUED LOGIC

• UNCERTAINTY =⇒ PROBABILITY

In particular:

• Many-valued logics deal with vague concepts and they use
intermediate truth values,

• Probability deals with events that are uncertain now, but that will
become true or false later, and it uses degrees of belief.
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Uncertainty vs vagueness

• Think of a drink that is poisonous with truth-degree 0.1
or a drink with probability 1/10 to be poisonous.

• Fuzzy logics are truth functional:

truth(A&B) = truth(A) & truth(B)

while probability is not:

Prob(A&B) 6= Prob(A) &Prob(B)
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Probability of vague events

A connection: what does it mean to speak about probability of
many-valued events?

Will there be traffic?, is it going to be cold tonight?

Anytime we make a common-life decision we are truly betting on a
many-valued event.

(CLASSICAL) PROBABILITY THEORY =⇒ STATE THEORY
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Classical probability functions

Let X be a nonempty set of events. Let B a collection of subsets of X,
closed by intersection, union and complement, containing ∅ and X (i.e. a
Boolean algebra).

A finitely additive probability is a function P : B → [0, 1] such that:

(i) If A,B ∈ B, where A ∩B = ∅, then

P (A ∪B) = P (A) + P (B),

(ii) P (∅) = 0 and P (X) = 1.
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Probability of many-valued events: states

Let X a set of many-valued events, and A be a many-valued structure on
X (for example, the equivalent for  Lukasiewicz logic of a Boolean algebra).

A state is a map s : A→ [0, 1] such that:

(i) For every a, b ∈ A, if a ∗ L b = 0, then

s(a+ L b) = s(a) + s(b),

(ii) s(1) = 1.

The condition means additivity with respect to  Lukasiewicz sum + L.

Thus states can be thought of as generalizations of finitely additive
probabilities.
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States: a developing theory

• States of  Lukasiewicz logic
D. Mundici, Averaging the Truth-value in  Lukasiewicz Logic. Studia Logica
55(1), 1995.

• States of Gödel logic
S. Aguzzoli, B. Gerla, V. Marra, Defuzzifying formulas in Gödel logic through
finitely additive measures. Proceedings FUZZ-IEEE, 2008.

• States of product logic
L. Godo, T. Flaminio, S. Ugolini States of free product algebras and their
integral representation, to appear
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States: why are they relevant?

• States of  L, G and Π are connected to regular Borel probability
measures. This allows to regard them as expected values of bounded
random variables.

• States can be regarded as operators averaging the truth value of  L,
G, Π logics.

• States characterize the coherence criterion of de Finetti’s foundation
of subjective probability wrt many-valued events. In this sense, states
are subjective probability measures.
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Integral representation of states

Let A be the algebra of formulas of n variables of  L, G or Π respectively.

A map s : A→ [0, 1] is a state iff there is a unique (regular Borel)
probability measure µ over [0, 1]n such that, for every fφ ∈ A,

s(fφ) =

∫
[0,1]n

fφ dµ.

 Lukasiewicz: Kroupa (2005) - Panti (2009)
Gödel: Aguzzoli, Gerla, Marra (2008)
Product: Godo, Flaminio, U. (2017)

Sara Ugolini Uncertainty, vagueness and probability of many-valued events 18/27



Why fuzzy logic? Uncertainty vs vagueness Probability of many-valued events

Expected value

Let X be a finite set and let A = [0, 1]X be the algebra of  Lukasiewicz
functions from X in [0, 1].

Every f ∈ A can be regarded as a real-valued and bounded random
variable on X.

Thus, via the integral representation, states can be seen as expected values
of f , indeed:

E(f) =

∫
X

fφ dµ = sµ(f)
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Averaging the truth value

The integral representation allows us to associate a real value to each
formula of the logic:

φ 7→ s(fφ) =

∫
[0,1]n

fφ dµs ∈ R

(it is reasonable to consider the integral operator as an averaging process)

Moreover, for all  L, G and Π, we can prove that each possible state
belongs to the convex closure of the valuations of the logic.
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de Finetti’s foundation of subjective probability

In the 1930s, de Finetti develops his foundation of subjective probability, in
alternative to, for instance, the frequentist approach.

Example:
Suppose that someone wants to build a bridge connecting Reggio Calabria
and Messina. Which is the probability that the bridge resists for 200 years?

Frequentist answer: build a huge number of bridges, wait for 200 years
and compute the ratio between the number of bridges which resisted and
the total number of bridges.
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de Finetti’s foundation of subjective probability: coherent
betting odds

Events of interest: e1 . . . ek.

Bookmaker publishes a book β assigning a betting odd βi ∈ [0, 1] to
each ei.

Gambler places stakes σ1, . . . , σk ∈ R, for each ei, and pays to the
bookmaker the amount of

∑k
i=1 σi · βi.

Once a future world w is reached, every ei is either true or false.

Bookmaker pays back to the gambler σi euros if ei turns out to be true
in w, or nothing if it is false in w.
Total balance:

∑k
i=1 σi(βi − w(ei)).
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de Finetti’s foundation of subjective probability: coherent
betting odds

• It is possible for the gambler to pay a negative amount σi on ei.
This assumption is called reversibility.

• The book β is called coherent if it does not ensure bookmaker to
incur a sure loss,i.e. for every choice of stakes σ1, . . . , σk, there
exists a world w in which the bookmaker’s total balance is not
negative. It is called incoherent otherwise.

• The probability of an event is the amount of money a that a coherent
and reversible bookmaker would propose for that event.
Example: How much would you bet on the bridge between
Reggio and Messina resisting for 200 years?
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de Finetti’s foundation of subjective probability: coherent
betting odds

A suitable formalization of classical de Finetti’s betting game consists in
interpreting events, books and possible worlds this way:

1 events are elements of an arbitrary boolean algebra B,

2 a book on a finite subset {e1, . . . , ek} ⊆ B is a map
β : ei 7→ βi ∈ [0, 1],

3 a possible world is a structure preserving map from B into the two
element boolean algebra 2, that is, any element of H(B,2).
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de Finetti’s foundation of subjective probability

Classical Coherence Criterion
Let B be a boolean algebra and let {e1, . . . , ek} be a finite subset of B. A
book β : ei 7→ βi is said to be coherent iff for each choice of
σ1, . . . , σk ∈ R, there exists w ∈ H(B,2) such that:

k∑
i=1

σi(βi − w(ei)) ≥ 0

Theorem
Let B be a boolean algebra, B′ = {e1, ..., ek} be a finite subset of B and
let β be a book on B′. Then the following are equivalent:

1 β is coherent.

2 There exists a probability p of B such that p coincides with β over
B′.
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de Finetti’s foundation of subjective probability
De Finetti never considered the case of many-valued events, anyway it is
not difficult to reframe his coherence criterion in the many-valued realm:

Many-valued Coherence Criterion
Let A be an MV-algebra and A′ = e1, . . . , ek be a finite subset of A. We
say that a book β : ei 7→ βi is coherent iff for each choice of
σ1, . . . , σk ∈ R, there exists w ∈ H(A, [0, 1]MV ) such that

k∑
i=1

σi(βi − w(ei)) ≥ 0.

Theorem
Let A be an algebra of  Lukasiewicz logic, A′ = {e1, ..., ek} be a finite
subset of A and let β be a book on A′. Then the following are equivalent:

1 β is coherent.

2 There exists a state s of A such that s coincides with β over A′.
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Recap

• Distinction between uncertainty and vagueness;

• Probability of many-valued events: theory of states;

• Integral representation of states of  L, G and Π: states as expected
values of bounded random variables;

• States as operators averaging the truth value of  L, G, Π logics;

• States as subjective probability measures in de Finetti’s theory.
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